
Effective field theory and projective construction for Zk parafermion fractional
quantum Hall states

Maissam Barkeshli and Xiao-Gang Wen
Department of Physics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA

�Received 7 November 2009; published 1 April 2010�

The projective construction is a powerful approach to deriving the bulk and edge field theories of non-
Abelian fractional quantum Hall �FQH� states and yields an understanding of non-Abelian FQH states in terms
of the simpler integer quantum Hall states. Here we show how to apply the projective construction to the Zk

parafermion �Laughlin/Moore-Read/Read-Rezayi� FQH states, which occur at filling fraction �=k / �kM +2�.
This allows us to derive the bulk low-energy effective field theory for these topological phases, which is found
to be a Chern-Simons theory at level 1 with a U�M��Sp�2k� gauge field. This approach also helps us
understand the non-Abelian quasiholes in terms of holes of the integer quantum Hall states.
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I. INTRODUCTION

Topological order in the quantum Hall liquids is currently
the subject of intense interest because of the possibility of
detecting, for the first time, excitations that exhibit non-
Abelian statistics.1,2 On the theoretical side, a primary issue
is how to go beyond some of the known examples of non-
Abelian fractional quantum Hall �FQH� states and to con-
struct and understand more general non-Abelian FQH
phases.

From the very beginning, two ways to construct and un-
derstand non-Abelian FQH states have been developed.1,2

One is through the use of ideal-wave functions and ideal
Hamiltonians.1,3 The physical properties of the constructed
FQH states can be deduced using conformal field theory
�CFT�. The other is the projective construction,2,4 which al-
lows us to derive the bulk effective theory and edge effective
theory for the constructed FQH states. The physical proper-
ties of the FQH states can be derived from those effective
theories.

The Zk parafermion states at filling fraction �=k / �kM
+2� were first studied using the ideal-wave function/ideal-
Hamiltonian approach.1,5 What is the bulk effective theory
for such Zk parafermion states? When M =0, the edge states
of the �=k /2 Zk parafermion state are described by the
SU�2�k Kac-Moody �KM� algebra. Using the correspondence
between CFT and Chern-Simons �CS� theory,6 it was sug-
gested that the bulk effective theory for the �=k /2 Zk para-
fermion state is the SU�2�k CS theory.7,8 The guessed SU�2�k
CS theory correctly reproduces the �k+1�-fold degeneracy
for the �=k /2 Zk parafermion state on a torus.

However, the SU�2�k CS theory has a serious flaw. The
SU�2� charges in the SU�2�k KM algebra for the edge states
are physical quantum numbers that can be coupled to exter-
nal probes, while the SU�2� charges in the SU�2�k CS theory
are unphysical and cannot be coupled to external probes
without breaking the SU�2� gauge symmetry. This suggests
that the SU�2� in the edge SU�2�k KM algebra is not related
to the SU�2� in the bulk SU�2�k CS theory. This leads us to
wonder that the CFT/CS theory correspondence may not be
the right way to derive the bulk effective theory for generic
non-Abelian states. In fact, when M �0, the edge states for

the �=k / �kM +2� Zk parafermion state are described by
U�1�n � Zk CFT, where the Zk CFT denotes the Zk parafer-
mion CFT �Ref. 9� and n=k�kM +2� /4.8 It is not clear what
is the corresponding bulk effective theory. Note that the Zk
parafermion CFT can be obtained from the coset construc-
tion of the SU�2�k /U�1� KM algebra.10 This suggests that the
bulk effective theory may be a SU�2�k � U�1� � U�1� CS
theory.8 But a naive treatment of such a CS theory gives rise
to �k+1�� integer number of degenerate ground states on a
torus, which does not agree with the ground-state degeneracy
for the �=k / �kM +2� Zk parafermion state. We see that the
bulk effective theory for a generic parafermion state is still
an unresolved issue.

In this paper, we show how the projective construction2,4

can be applied to the Zk parafermion �Read-Rezayi� states.
This leads to a simplified understanding of the Zk parafer-
mion states in terms of the integer quantum Hall �IQH� states
and a different way of computing their topological proper-
ties. We find the bulk effective theory for the �=k / �kM +2�
Zk parafermion state to be the �U�M��Sp�2k��1 CS theory
�with a certain choice of electron operators and fermionic
cores for certain quasiparticles�. Such a CS theory correctly
reproduces the ground state degeneracy on a torus.

II. PROJECTIVE CONSTRUCTION

The projective construction was explained in detail in
Ref. 4. The idea is to rewrite the electron operator in terms of
new fermionic degrees of freedom

�e = �
���

��1
. . . ��n

C�1. . .�n
. �1�

There are n flavors of fermion fields, ��, for �=1, . . . ,n,
which carry electromagnetic charge q�, respectively, and
which are called “partons.” The C�1. . .�n

are constant coeffi-
cients and the sum of the charges of the partons is equal to
the charge of the electron, which we set to 1: ��q�=1. The
electron operator �e can be viewed as the singlet of a group
G, which is the group of transformations on the partons that
keeps the electron operator invariant. The theory in terms of
electrons can be rewritten in terms of a theory of partons,
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provided that we find a way to project the newly enlarged
Hilbert space onto the physical Hilbert space, which is gen-
erated by electron operators. We can implement this projec-
tion at the Lagrangian level by introducing a gauge field,
with gauge group G, which couples to the current and den-
sity of the partons. We can therefore write the Lagrangian as

L = i�†�0� +
1

2m
�†��i − iAiQ�2� + Tr�j�a�� + ¯ �2�

Here, �†= ��1
† , . . . ,�n

†�, a is a gauge field in the n�n matrix
representation of the group G. A is the external electromag-
netic gauge field and Qij =qi�ij is an n�n matrix with the
electromagnetic charge of each of the partons along the di-
agonal. The ¯ represent additional interaction terms be-
tween the partons and jab

� =�a
†���b. Eq. �2� is simply a con-

venient rewriting of the theory for the original electron
system in terms of a different set of fluctuating fields.

Now we assume that there exists some choice of micro-
scopic interaction parameters for which the interaction be-
tween the partons is such that the low-energy fluctuations of
the a� gauge field are weak after integrating out the partons.
This means that the gauge theory that results from integrat-
ing out the partons can be treated perturbatively about its
free Gaussian fixed point. Since the partons in the absence of
the gauge field form a gapped state �	parton	 and since we
can treat the gauge field perturbatively, the ground state re-
mains to be gapped even after we include the gauge fluctua-
tions. The ground-state wave function is, at least for large
separations, �zi−zj�
1, of the form

	��zi�� = 
0��
i=1

N

�e�zi��	parton	 . �3�

If we assume that the ith parton forms a �=1 integer quan-
tum Hall state, the partons will be gapped and can be inte-
grated out to obtain an effective action solely in terms of the
gauge field. The action that we obtain is a CS action with
gauge group G, which should be expected given that for a
system that breaks parity and time reversal, the CS term is
the most relevant term in the Lagrangian at long wave-
lengths. If we ignore the topological properties of the parton
IQH states, then integrating out the partons will yield4

L =
1

4�
Tr�a � a� +

1

2�
A Tr�Q � a� +

Tr�Q2�
4�

A � A + ¯ ,

�4�

where A�A=���
A���A
 and the ¯ represents higher order
terms. Note that the filling fraction of the corresponding
FQH state is given by �=Tr�Q2�=�aqaqa. Since the partons
do not form a trivial gapped state, but rather a topologically
nontrivial one, Eq. �4� can only describe ground-state prop-
erties of the phase. It can be expected to reproduce the cor-
rect result for the ground-state degeneracy on genus g sur-
faces, for instance, and the correct fusion rules for the non-
Abelian excitations, but it cannot be expected to produce all
of the correct quantum numbers for the quasiparticle excita-
tions, such as the quasiparticle spin,21 unless the partons are
treated more carefully. This can be done in two ways. One

way is to not integrate out the partons and to use Eq. �2�,
taking into account a Chern-Simons term for a� that emerges
as we renormalize to low energies. As will be discussed in
more detail in Sec. V, the quasiparticles will correspond to
holes in the parton IQH states which become non-Abelian as
a result of the coupling to the non-Abelian Chern-Simons
gauge field. The other way is to use the pure gauge theory in
Eq. �4� and to put in by hand a fermionic core for quasipar-
ticles that lie in certain “odd” representations of G. Some
quasiparticles correspond to an odd number of holes in the
parton IQH states and the fermionic character of these odd
numbers of holes should be taken into account.

Let us now turn to the edge theory. Before the introduc-
tion of the gauge field, the edge theory is the edge theory for
n free fermions forming an integer quantum Hall state. If
each parton forms a �=1 IQH state, then the edge theory
would be a CFT describing n chiral free fermions, which we
will denote as U�1�n. After projection, the edge theory is
described by a U�1�n /G coset theory that we will understand
in some more detail when we specialize to the Zk parafer-
mion states.

To be more precise, the edge theory should be understood
in the following way. The electron creation and annihilation
operators, �e and �e

†, generate an operator algebra that we
refer to as the electron operator algebra. Such electron op-
erator algebra can be embedded in the U�1�n /G coset theory.
The topologically distinct quasiparticles are then labeled by
different representations of this electron operator algebra. In
some cases, the electron operator algebra coincides with
some well-known algebra. For the bosonic Zk parafermion
states at �=k /2, for instance, the electron operator algebra is
the same as the SU�2�k KM algebra, for which the represen-
tation theory is well-known.

III. EFFECTIVE THEORY OF PARAFERMION STATES

Now let us apply the projective construction to obtain the
Zk parafermion states. A crucial result for the projective con-
struction is that the �=1 FQH wave function coincides with
the correlation function of free fermions in a 1+1d CFT:

�
i�j

�zi − zj� = lim
z�→�

z�
2hN
e−iN��z����z1� ¯ ��zN�	 , �5�

where ��z� is a free complex chiral fermion, and ��=�†� is
the fermion current. The operator product expansions for
��z� satisfy �†�z���w�� 1

z−w and ��z���w���z−w�����w�.
Equation �5� implies that the wave function �3� can also be
expressed as a correlation function in a 1+1d CFT �Ref. 4�

	��zi�� = lim
z�→�

z�
2hN
e−iN��z���

i

�e�zi�� , �6�

where the partons �i�z� are now interpreted as free complex
chiral fermions in a 1+1d CFT.

The Zk parafermion FQH wave functions are constructed
as correlation functions of a certain CFT

	Zk
= lim

z�→�
z�

2hN
e−iN��z��Ve�z1� ¯ Ve�zN�	 , �7�

where Ve=�1ei�1/��. �1 is a simple-current operator in the Zk
parafermion CFT of Zamalodchikov and Fateev9 and � is a
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free scalar boson. These wave functions exist for �= k
kM+2 ;

for M =0, the electron operator Ve=�1ei�2/k��J+ and Ve
†

=�1
†e−i�2/k��J− generate the SU�2�k KM algebra

Ja�z�Jb�0� �
k�ab

z2 +
ifabcJ

c�0�
z

+ ¯ , �8�

where a ,b=1,2 ,3 and J�=J1� iJ2. This means that any
electron operator that satisfies the SU�2�k current algebra will
yield the same wave function. The crucial result for the pro-
jective construction approach to the Zk parafermion states is
that if we take the electron operator to be

�e;k = �
a=1

k

�2a−1�2a, �9�

then it is easy to verify that �e;k and �e;k
† also satisfy the

SU�2�k current algebra and therefore the wave function �6� is
the Zk parafermion wave function. It follows that the Zk para-
fermion states at �= k

kM+2 , for general M, are reproduced in
the projective construction for the following choice of elec-
tron operator

�e
�k;M� = �2k+1 ¯ �2k+M�

a=1

k

�2a−1�2a, �10�

because including the additional operators �2k+1 , . . . ,�2k+M,
each of which is in a �=1 IQH state, has the effect of mul-
tiplying 	Zk

by the Jastrow factor �i�j�zi−zj�M.
In the case M =0, the electron operator can be written as

�e
�k;0�=�TA�, where �T= ��1 , . . . ,�2k� and A= � 0 −I

I 0 �.22 I is
the k�k identity matrix. The group of transformations on the
partons that leaves the electron operator invariant is simply
the group of 2k�2k matrices that keeps invariant the anti-
symmetric matrix A. In this case, this group is the fundamen-
tal representation of Sp�2k�. Note that Sp�2�=SU�2� and
Sp�4�=SO�5�. Thus, we expect the edge theory to be
U�1�2k /Sp�2k�1, and the bulk CS theory to be Sp�2k�1, as
described in the previous section. For general M, the edge
theory becomes U�1�2k+M / �U�M��Sp�2k��1 and the bulk ef-
fective theory is a �U�M��Sp�2k��1 Chern-Simons theory.

IV. GROUND-STATE DEGENERACY
FROM EFFECTIVE CS THEORY

As a first check that this CS theory reproduces the correct
topological properties of the Zk parafermion states, we cal-
culate the ground-state degeneracy on a torus. This can be
done explicitly using the methods of Refs. 4 and 11; for M
=0, the result is k+1, which coincides with the torus degen-
eracy of the M =0 Zk parafermion states. In Appendix A we
outline in more detail the calculation in the case M =1, for
which we find the ground-state degeneracy on a torus to be
�k+1��k+2� /2, which also agrees with known results for the
Zk parafermion states.

The case M =1 reveals a crucial point. In this case, we
have �U�1��Sp�2k��1 CS theory. Naively, we would think
that the extra U�1�1 part is trivial and does not contribute to

the ground-state degeneracy or the fusion rules and again we
might expect a ground-state degeneracy of k+1, but this is
incorrect. The reason for this is that usually when we specify
the gauge group and the level for CS theory, there is a stan-
dard interpretation of what the large gauge transformations
are on higher genus surfaces, but this standard prescription
may be inapplicable. Instead, the large gauge transformations
are specified by the choice of electron operator. In particular,
for odd k, the extra factor �k+2� /2 is half-integer, which
highlights the fact that the U�1� and Sp�2k� parts are married
together in a nontrivial way.

In the M =0 case, the standard interpretation of the al-
lowed gauge transformations for the Sp�2k�1 CS theory is
correct and we can follow the standard prescription for de-
riving topological properties of CS theories at level k with a
simple Lie group G. In these cases, the ground state degen-
eracy is given by the number of integrable representations of
the affine Lie algebra ĝk, where g is the Lie algebra of G.
The quasiparticles are in one-to-one correspondence with the
integrable representations of ĝk, and their fusion rules are
identical as well. In the case of the M =0 Zk parafermion
states, it is already known that the different quasiparticles
correspond to the different integrable representations of the
SU�2�k KM algebra and the fusion rules are the same as the
fusion rules of the SU�2�k representations. In fact, Sp�2k�1
and SU�2�k have the same number of primary fields and the
same fusion rules, and so the Sp�2k�1 CS theory has the same
fusion rules as the Zk parafermion states and the same
ground-state degeneracies on high genus Riemann surfaces.
The equivalence of the fusion rules for the representations
Sp�2k�1 and SU�2�k current algebra is a special case of a
more general “level-rank” duality between Sp�2k�n and
Sp�2n�k,

12 and is also related to the fact that the edge theory
for the M =0 Zk parafermion states can be described either by
the U�1�2k /Sp�2k�1 coset theory or, equivalently, by the
SU�2�k Wess-Zumino-Witten model. For a more detailed dis-
cussion, see Appendix B.

V. QUASIPARTICLES FROM THE PROJECTIVE
CONSTRUCTION

We can understand the non-Abelian quasiparticles of the
Zk FQH states as holes in the parton integer quantum Hall
states.23 After projection, these holes become the non-
Abelian quasiparticles and we can analyze these quasiparti-
cles using either the bulk CS theory or through the edge
theory/bulk wave function, all of which we obtained from
the projective construction. The easiest way to analyze the
quasiparticles is through the latter approach, which we de-
scribe first. The fundamental quasihole is the one with a
single hole in one of the parton IQH states. We expect the
wave function for this excited state to be, as a function of the
quasiparticle coordinate � and the electron coordinates �zi�,

	���;�zi�� � 
0��
i

�e�zi��1
†�z���1����	parton	

� 
e−i�N+q1���z���
i

�e�zi��1���� . �11�
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More general quasiparticles should be related to operators of
the form �i� j�k¯ To see whether these operators really cor-
respond to the non-Abelian quasiparticles of the Zk parafer-
mion states, we can study their pattern of zeros.13,15 The
pattern of zeros is a quantitative characterization of quasipar-
ticles in the FQH states. In general, it may not be a complete
one-to-one labeling of the quasiparticles, but in the case of
the Zk parafermion states, it is; one way to see this from the
projective construction approach is to compute the ground
state degeneracy on the torus from the projective construc-
tion, which yields the number of topologically distinct qua-
siparticles, and then to observe that the number of operators
with distinct pattern of zeros is the same as the number of
distinct quasiparticles.

The pattern of zeros �l�;a� is defined as follows.13 Let V�

denote the quasiparticle operator, and let V�;a=�e
aV�. Then,

�e�z�V�;a�w� � �z − w�l�;a+1V�;a+1 + ¯ , �12�

where ¯ represent terms higher order in powers of �z−w�.
From �l�;a� we construct the occupation number sequence
�n�;l� by defining n�;l to be the number of a for which l�;a
= l. The occupation number sequences n�;l are periodic for
large l and topologically distinct quasiparticles will have oc-
cupation numbers with distinct unit cells for large l. In Table
I, we have listed pattern of zeros for some of the operators of
the form �i� j¯ We see that they coincide exactly with the
known quasiparticle pattern of zeros in the Zk parafermion
states, indicating that these operators do indeed correspond
to the quasiparticle operators of the Zk parafermion states.
Note that two sets of operators correspond to topologically
equivalent quasiparticles if either they can be related to each
other by a gauge transformation or by the electron operator.
In Table I, some of the gauge equivalences are indicated,
using the symbol �. There are also various operators that are
not simply gauge equivalent but that also differ by electron
operators. For example, in the Z3 states for M =0, the opera-
tors �1 and �1�2� j are topologically equivalent quasiparticle
operators; for the Z2 states at M =0, �i and �i� j�k are also
topologically equivalent, etc.

The fundamental non-Abelian excitation in the Zk parafer-
mion states is the excitation that carries minimal charge and
whose fusion with itself can generate all other quasiparticles.
In the projective construction point of view, this operator is
�i, for i=1, . . . ,2k �they are all gauge equivalent�, and cor-
responds to a single hole in one of the parton IQH states. In
the M =0 Zk parafermion states, this operator has electromag-
netic charge Q=1 /2; its scaling dimension can be found us-
ing the stress-energy tensor of the U�1�2k /Sp�2k�1 theory
�see Appendix B�: h�i

=1 /2− �2k+1� /4�k+2�=3 /4�k+2�,
which agrees with the known results. Notice that for opera-
tors with an odd number of parton fields, the U�1�n contri-
bution to the scaling dimension is half-integer; this is related
to the fermionic core that we put in by hand when we use the
pure U�M��Sp�2k� gauge theory from Eq. �4�.

One way to understand how the trivial electronic excita-
tions of the parton IQH states become non-Abelian excita-
tions is by considering the bulk effective theory. The low
energy effective theory is a theory of partons coupled to a
U�M��Sp�2k� gauge field, which implements the projection

onto the physical Hilbert space. As we renormalize to low
energies, generically a CS term will appear for the U�M�
�Sp�2k� gauge field because it is allowed by symmetry. The
CS term has the property that it endows charges with mag-
netic flux; therefore, two individual, well-separated partons
carry both charge and magnetic flux in the fundamental rep-
resentation of U�M��Sp�2k�. As one parton is adiabatically
carried around another, there will be a non-Abelian
Aharonov-Bohm phase associated with an electric charge be-
ing carried around a magnetic flux. We expect this point of
view can be made more precise in order to compute directly

TABLE I. We display the pattern of zeros13,15 �nl� for the vari-
ous parton operators and their electromagnetic charge, Q, modulo 1.
The operators �i are here chiral free fermion operators in a 1+1d
CFT. Normal ordering is implicit. There are many different opera-
tors that correspond to topologically equivalent quasiparticles. Here
we listed the ones with minimal scaling dimension and � indicates
gauge equivalences between various operators. The asymptotic val-
ues of the sequence �nl� for large l classifies each equivalence class.
For the M =0 states, each parton operator �i has electromagnetic
charge qi=1 /2. For the M =1 states, �i has charge 1 / �k+2� for i
=1, . . . ,2k and �2k+1 has charge k / �k+2�.

Z2 states, M =0, �e=�1�2+�3�4

Parton operators �nl� Q%1

�e 2 0 0

�1�3��1�4� . . . 0 2 0

�i 1 1 1/2

Z2 states, M =1, �e=�5��1�2+�3�4�
Parton operators �nl� Q%1

�e 1 1 0 0 0

�1�3��2�4� . . . 0 1 1 0 1/2

�1�3�5��2�3�5� . . . 0 0 1 1 0

�1�2��3�4 1 0 0 1 1/2

�1� . . . ��4 1 0 1 0 1/4

�1�5��4�5� . . . 0 1 0 1 3/4

Z3 states, M =0, �e=�1�2+�3�4+�5�6

Parton operators �nl� Q%1

�e 3 0 0

�i 2 1 1/2

�1�3��1�4��1�5��1�6� . . . 1 2 0

�1�3�5��1�3�6� . . . 0 3 1/2

Z4 states, M =0, �e=�1�2+�3�4+�5�6+�7�8

Parton operators �nl� Q%1

�e 4 0 0

�i 3 1 1/2

�1�3��1�4� ¯ ��1�8� . . . 2 2 0

�1�3�5��1�3�6� . . . 1 3 1/2

�1�3�5�7��1�3�6�8� . . . 0 4 0
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from the bulk theory various topological properties of the
quasiparticles.

Note that in the above discussion, there are several levels
of analysis: the bulk effective field theory, the edge theory,
and the relation to wave functions via Eq. �11�. The relation
to wave functions in Eq. �11� is specific to the quasiholes; to
create quasielectron excitations instead �excitations whose
charge has the same sign as that of the electron�, we need to
create particlelike excitations using states from higher parton
Landau levels and subsequently project onto the appropriate
Hilbert space. Given the relation to CFT correlators in Eq.
�11�, it may be possible that the quasielectron operators dis-
covered in Ref. 14 can also be written in terms of parton
operators. In contrast to the wave function analysis, if the
parton operators �i are interpreted as operators in the edge
theory corresponding to quasiholes, then �i

† may be viewed
as operators in the edge theory that correspond to quasielec-
trons. Similarly, the perspective from the bulk effective field
theory applies equally well to quasiholes and to quasielec-
trons.

VI. DISCUSSION

We conclude that the correct and most natural description
of the effective field theory for the Zk parafermion FQH
states is the U�M��Sp�2k� CS theory presented here, for
which various topological properties can be explicitly com-
puted. In this case, the role of the U�M��Sp�2k� gauge field
is clear: it is to implement the projection onto the physical
Hilbert space generated by the electron operator. In particu-
lar, the SU�2� quantum numbers are physical and we should
now be able to couple to them through external probes in the
bulk. More precisely, this means the following. The states in
the physical Hilbert space, Hphys, can all be written in terms
of parton operators acting on the vacuum and a projection
operator that projects onto the physical states. The states in
Hphys therefore admit an action of the group of transforma-
tions, G=O�2M +4k�, that act on the partons. Group ele-
ments from the U�M��Sp�2k� subgroup of G must keep all
of the physical states invariant and the low energy effective
action must preserve this U�M��Sp�2k� gauge symmetry.
On the other hand, the states in Hphys do transform under the
subgroup G \U�M��Sp�2k�, and this contains the SU�2�
subgroup that is a symmetry of the edge U�1�
�SU�2�k /U�1� theory. The low energy effective action—in
terms of partons coupled to the U�M��Sp�2k� gauge field—
can now break this SU�2� symmetry, as can the edge theory,
e.g., by coupling to external fields.

Observe that the electron operator for the Zk states is
a sum of operators: �e=�1+�2+ ¯�k. This implies that
the Zk parafermion wave functions can actually be thought
of as a �anti�symmetrization of a k layer state, 	Zk
=S�	abl��zi

�l����, where

	abl � 
�
i,l

�l�zi
�l��� , �13�

and zi
�l� is the coordinate of the ith electron in the lth layer.

S�¯ � refers to symmetrization or antisymmetrization, de-
pending on whether the particles are boson or fermions, re-

spectively. In the case M =0, 	abl is a k-layer wave function
with a �=1 /2 Laughlin state in each layer. For M =1, it is a
generalized �331� wave function. The fact that the Zk para-
fermion wave functions correspond to �anti�symmetrizations
of these k-layer wave functions was first observed in Ref. 16.

The case k=2 corresponds to the Pfaffian and it is well-
known that the Pfaffian wave function is equal to a symme-
trization of the �n ,n ,n−2� bilayer wave function, a fact that
is closely related to the existence of a continuous phase tran-
sition between the �n ,n ,n−2� bilayer wave function and the
single-layer Pfaffian as the interlayer tunneling is
increased.17,18 These observations suggest a myriad of possi-
bly continuous phase transitions between various multilayer
Abelian and non-Abelian states as the interlayer tunneling is
tuned, which can be theoretically described by gauge-
symmetry breaking. For example, breaking the Sp�2k� gauge
symmetry down to SU�2�� ¯ �SU�2� would correspond to
a phase transition from a single-layer Zk parafermion state to
a k-layer Abelian state. Breaking Sp�8� to Sp�4��Sp�4�
could correspond to a transition between the Z4 parafermion
state and a double layer state with a Pfaffian in each layer.

Finally, it is interesting to notice that the two ways of
thinking about the edge theory and the quasiparticle content
provide a physical manifestation of the mathematical concept
of level-rank duality. On the one hand, the edge theory is a
projection of free fermions by the gauge group that keeps the
electron operator invariant, while on the other hand, it can be
understood by considering the representation theory of the
electron operator algebra. The fact that both perspectives
yield the same results is a manifestation of level-rank duality.
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APPENDIX A: CALCULATION OF TORUS
GROUND-STATE DEGENERACY

Here we calculate the ground state degeneracy on a torus
for the U�1��Sp�2k� Chern-Simons theory, which is the
bulk effective theory for the M =1 Zk parafermion states.
This calculation highlights the fact that simplify specifying
the gauge group and the level are not enough to fully specify
the bulk effective theory; one needs also to specify the al-
lowed large gauge transformations, which can be done by
specifying a choice of electron operator.

For the M =1 Zk parafermion states, we take the electron
operator to be

�e = �2k+1�
a=1

k

�2a−1�2a. �A1�

The gauge field takes values in the Lie algebra of U�1�
�Sp�2k�, which in this case consists of �2k+1�� �2k+1�
matrices: � Ta 0

0 0 � and diag�0,1 ,0 ,1 , . . . ,0 ,1 ,−1�, with Ta the
generators of Sp�2k� in the fundamental representation.

To compute the ground state degeneracy on a torus, we
follow the procedure outlined in Ref. 4. The classical con-
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figuration space of CS theory consists of flat connections, for
which the magnetic field vanishes: b=�ij�iaj =0. This con-
figuration space is completely characterized by holonomies
of the gauge field along the noncontractible loops of the
torus

W��� = Pei��a·dl. �A2�

More generally, for a manifold M, the gauge-inequivalent set
of W��� form a group: �Hom:�1�M�→G� /G, which is the
group of homomorphisms of the fundamental group of M to
the gauge group G, modulo G. For a torus, �1�T2� is Abelian,
which means that W��� and W���, where � and � are the
two distinct noncontractible loops of the torus, commute
with each other and we can always perform a global gauge
transformation so that W��� and W��� lie in the maximal
Abelian subgroup, Gabl, of G �this subgroup is called the
maximal torus�. The maximal torus is generated by the Car-
tan subalgebra of the Lie algebra of G; in the case at hand,
this Cartan subalgebra is composed of k+1 matrices, k of
which lie in the Cartan subalgebra of Sp�2k�, in addition to
diag�0,1 ,0 ,1 , . . . ,0 ,1 ,−1�. Since we only need to consider
components of the gauge field aI that lie in the Cartan sub-
algebra, the CS Lagrangian becomes

L =
1

4�
KIJa

I � aJ, �A3�

where KIJ=Tr�pIpJ� and pI, I=1, . . . ,k+1 are the generators
that lie in the Cartan subalgebra.

There are large gauge transformations U=e2�xip
I/L, where

x1 and x2 are the two coordinates on the torus and L is the
length of each side. These act on the partons as

� → U� , �A4�

where �T= ��1 , . . . ,�2k+1�, and they take ai
I→ai

I+2� /L.
These transformations will be the minimal large gauge trans-
formations if we normalize the generators as follows:

pij
I = �ij��i,2I − �i,2I−1�, I = 1, . . . ,k ,

pk+1 = diag�0,1,0,1, . . . ,0,1,− 1� . �A5�

Thus, for example for the case k=3, the K matrix is

K =�
2 0 0 − 1

0 2 0 − 1

0 0 2 − 1

− 1 − 1 − 1 k + 1
� . �A6�

In addition to the large gauge transformations, there are dis-
crete gauge transformations W�U�1��Sp�2k� which keep
the Abelian subgroup unchanged but interchange the aI’s
among themselves. These satisfy

W†GablW = Gabl, �A7�

or, alternatively,

W†pIW = TIJp
J, �A8�

for some �k+1�� �k+1� matrix T. These discrete transforma-
tions correspond to the independent ways of interchanging
the partons.

In this U�1��Sp�2k� example, there are k�k+1� /2 differ-
ent discrete gauge transformations W. k of them correspond
to interchanging �2i−1 and �2i, for i=1, . . . ,k, and k�k
−1� /2 correspond to the independent ways of interchanging
the k different terms in the sum of Eq. �A1�.

Picking the gauge a0
I =0 and parametrizing the gauge field

as

a1
I =

2�

L
X1

I a2
I =

2�

L
X2

I , �A9�

we have

L = 2�KIJX1
I Ẋ2

J . �A10�

The Hamiltonian vanishes. The conjugate momentum to X2
J

is

p2
J = 2�KIJX1

I . �A11�

Since X2
J �X2

J +1 as a result of the large gauge transforma-
tions, we can write the wave functions as

��X� 2� = �
n�

cn�e
2�n� ·X� 2, �A12�

where X� 2= �X2
1 , ¯X2

k+1� and n� is a �k+1�-dimensional vector
of integers. In momentum space the wave function is

��p�2� = �
n�

cn��
k+1�p�2 − 2�n�� � �

n�
cn��

k+1�KX� 1 − n�� ,

�A13�

where �k+1�x�� is a �k+1�-dimensional delta function. Since
X1

J �X1
J +1, it follows that cn� =cn��, where �n���I=nI+KIJ, for

any J. Furthermore, each discrete gauge transformation Wi
that keeps the Abelian subgroup Gabl invariant corresponds
to a matrix Ti �see Eq. �A8��, which acts on the diagonal
generators. These lead to the equivalences cn� =cTin�

. The num-
ber of independent cn� can be computed for each k; carrying
out the result on a computer, we find that there are �k
+1��k+2� /2 independent wave functions, which agrees with
the known torus ground state degeneracy of the Zk parafer-
mion states.

APPENDIX B: LEVEL-RANK DUALITY

To understand the level-rank duality better, let us examine
the equivalence between the U�1�2kn CFT, which is the CFT
of 2kn free fermions, and the Sp�2k�n�Sp�2n�k WZW
model. Evidence for the equivalence of these two theories
can be easily established by noting that they both have the
same central charge, c=2kn, and that the Lie algebra
Sp�2k� � Sp�2n� can be embedded into the symmetry group
of the free fermion theory, O�4kn�.19 The possibility of this
embedding implies that we can construct currents,
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JA =
1

2
��T��

A ��, Ja =
1

2
��T��

a ��, �B1�

where the ���� are Majorana fermions, which are related to
the complex fermions as �i=�2i+ i�2i+1. �TA� and �Ta� are
mutually commuting sets of 4kn�4kn skew-symmetric ma-
trices that lie in the Lie algebra of SO�4kn� and that sepa-
rately generate the Sp�2k� and Sp�2n� Lie algebras, respec-
tively. These currents satisfy the Sp�2k�n�Sp�2n�k current
algebra, as can be seen by computing the OPEs

JA�z�JB�w� �
n�AB

�z − w�2 +
ifABCJC�w�

z − w
+ ¯ ,

Ja�z�Jb�w� �
k�ab

�z − w�2 +
ifabcJ

c�w�
z − w

+ ¯ ,

Ja�z�JA�w� � O��z − w�0� . �B2�

To compute the levels n and k, we have normalized the gen-
erators in the conventional way, so that the quadratic Casimir
in the adjoint representation is twice the dual Coxeter num-

ber of the corresponding Lie algebra. The stress-energy ten-
sor for the Sp�2k�n�Sp�2n�k theory, defined as

T�z� =
1

2�k + n + 1���A

JAJA + �
a

JaJa� , �B3�

therefore satisfies the same algebra as the stress-energy ten-
sor of the free fermion theory: TU�1��z�= 1

2�������. Thus,
for the U�1�2k /Sp�2k�1 edge theory of the M =0 Zk parafer-
mion states, we can take the stress tensor to be

TZk
�z� = TU�1��z� −

1

2�k + 2��A

JAJA. �B4�

We can use this stress tensor to compute the scaling dimen-
sions of the quasiparticle operators in the edge theory.

The level-rank duality should hold for general M as well,
however in that case the edge theory is more complicated. It
is not a gk WZW model where g is a semisimple Lie group;
instead, the edge theory can be thought of as a certain Z2
orbifold of the Zk parafermion CFT and a U�1� Gaussian
CFT.24
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